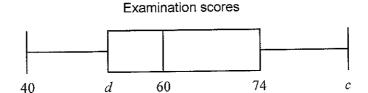
Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

Section A

Answer all questions in the boxes provided. Working may be continued below the lines if necessary.

1. [Maximum mark: 5]

The following box-and-whisker plot represents the examination scores of a group of students.



(a) Write down the median score.

[1]

The range of the scores is 47 marks, and the interquartile range is 22 marks.

- (b) Find the value of
 - (i) c;

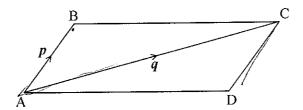
(ii) d.

[4]

a) 60)
1	77
D.L. J O.	:. /.
1	< 1
bu) E).O
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

2. [Maximum mark: 7]

The following diagram shows the parallelogram ABCD.



Let $\overrightarrow{AB} = p$ and $\overrightarrow{AC} = q$. Find each of the following vectors in terms of p and/or q.

(a) \vec{CB}

[2]

(b) $\vec{\text{CD}}$

[2]

(c) \overrightarrow{DB}

[3]

(-)	
	a)-q+p
	b) 9-P
	C) 2p-9
	a) ap-9

3. [Maximum mark: 6]

Let $f'(x) = 6x^2 - 5$. Given that f(2) = -3, find f(x).

 $\int 6x^2 - 5 \, dx = 2x^3 - 5x + C$ $-3 = 2(2)^3 - 5(2) + C$

-3 = 16 - 10 + C -3 = 6 + C -9 = C

4 (x) = 2x -5x-9

N15/5/MATME/SP1/ENG/TZ0/XX

5. [Maximum mark: 6]

Let $f(x) = (x-5)^3$, for $x \in \mathbb{R}$.

(a) Find $f^{-1}(x)$.

[3]

(b) Let g be a function so that $(f \circ g)(x) = (x^6)$ Find g(x).

[3]

 $3\sqrt{x} = 7(y-5)^{3} \qquad f(x) = (x-5)^{3}$ $2\sqrt{x} = y - 5 \qquad \text{apple}$ $5 + \sqrt[3]{x} = y \qquad q(x) = (2x^{2} + 5)$

f-1(x)=5+3(X

4. [Maximum mark: 7]

Let $f(x) = 3\sin(\pi x)$.

(a) Write down the amplitude of f.

[1]

(b) Find the period of f.

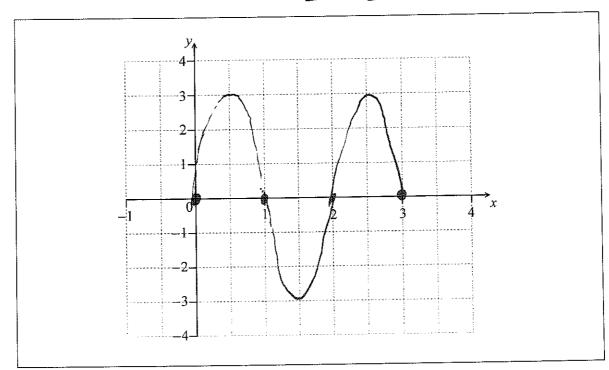
[2]

4a) 3 b) 2 $f(1) = 3\sin(\pi 1)$ = 0

 $f(0) = 3 \sin(\pi \phi)$ $= 3 \sin(\pi \phi)$ = 0

(c) On the following grid, sketch the graph of y = f(x), for $0 \le x \le 3$.

[4]



[7]

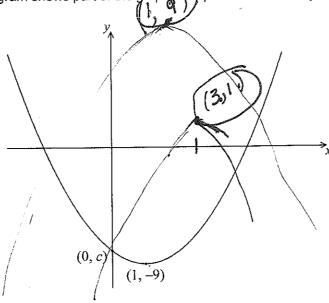
Do **not** write solutions on this page.

Section B

Answer all questions in the answer booklet provided. Please start each question on a new page.

[Maximum mark: 16] 8.

The following diagram shows part of the graph of a quadratic function f.



The vertex is at (1, -9), and the graph crosses the *y*-axis at the point (0, c).

The function can be written in the form $f(x) = (x - h)^2 + k$.

(a) Write down the value of
$$h$$
 and of k . $h = 1$ $k = -9$ [2]

(a) Write down the value of
$$h$$
 and of k . $h = 1$ $k = -9$

(b) Find the value of c . $C = (O - 1)^2 + -9$
 $C = (1 - 9)^2 + 1$

Let $g(x) = (x - 3)^2 + 1$. The graph of g is obtained by a reflection of the graph of f in

the *x*-axis, followed by a translation of $\binom{p}{c}$.

(c) Find the value of
$$p$$
 and of q . $\rho = 2$ $\beta = -8$ [5]

Find the x-coordinates of the points of intersection of the graphs of f and g. (d)

$$-(x-3)^{2}+1=(x-1)^{2}-9$$

$$-x^{2}+6x-9+1=x^{2}-2x+1-9$$

$$-x^{2} + 6x - 8 = x^{2} - 2x - 8 = 0$$

$$-x^{2} + 6x - 8 = x^{2} - 2x - 8 = 0$$

$$x = 0$$

Do not write solutions on this page.

9. [Maximum mark: 15]

A line L_1 passes through the points A(0, -3, 1) and B(-2, 5, 3).

- Show that $\overrightarrow{AB} = \begin{pmatrix} -2 \\ 8 \\ 2 \end{pmatrix}$. $-2 0 \\ 5 -3 \\ 3 1 = \begin{pmatrix} -2 \\ 8 \\ 2 \end{pmatrix}$
 - Write down a vector equation for L_1 . $r = \begin{pmatrix} 0 \\ -3 \end{pmatrix} + \begin{pmatrix} -2 \\ 8 \end{pmatrix}$ [3]

A line L_2 has equation $\mathbf{r} = \begin{pmatrix} -1 \\ 7 \\ -4 \end{pmatrix} + s \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$. The lines L_1 and L_2 intersect at a point C.

- Show that the coordinates of C are (-1, 1, 2). -(+-60) = -1 -(+-61) = 1 -(+-61) = 2[5]
- A point D lies on line L_2 so that $|\overrightarrow{CD}| = \sqrt{18}$ and $\overrightarrow{CA \cdot CD} = -9$. Find \overrightarrow{ACD} .

$$\overrightarrow{CA} = \begin{pmatrix} -1 \\ -4 \end{pmatrix} \qquad \overrightarrow{CB} = \begin{pmatrix} x-1 \\ y-1 \\ 2-2 \end{pmatrix} = \begin{pmatrix} y-1 \\ y-1 \\ 2-2 \end{pmatrix}$$

$$\frac{(x+1)^{2}+(y-1)^{2}+(z-2)^{2}}{(x+1)^{2}+(y-1)^{2}+(z-2)^{2}} = \sqrt{18}$$

$$\frac{(x+1)^{4}+(y-1)^{2}+(z-2)^{2}}{(x+1)^{2}+(y-1)^{2}+(z-2)^{2}} = \sqrt{18}$$

$$-(x+1)^{4}+(y-1)^{4}+(z-2)^{2}+(z-2)^{2} = \sqrt{18}$$

$$-(x+1)^{4}+(y-1)^{4}+(z-2)^{$$

$$(3x+1)^n$$

135n

$$\begin{pmatrix} -1 \\ 2 \end{pmatrix} = C$$

$$\begin{pmatrix} -1+05 \\ 7+5 \\ -4-5 \end{pmatrix} = D$$

$$\begin{pmatrix} 0 \\ 6+5 \\ -6-5 \end{pmatrix}$$

$$(6+5)^{2} + (-6-5)^{2} = 18$$

 $36 + 125 + 5^{2} + 36 + 125 + 5^{2} = 18$

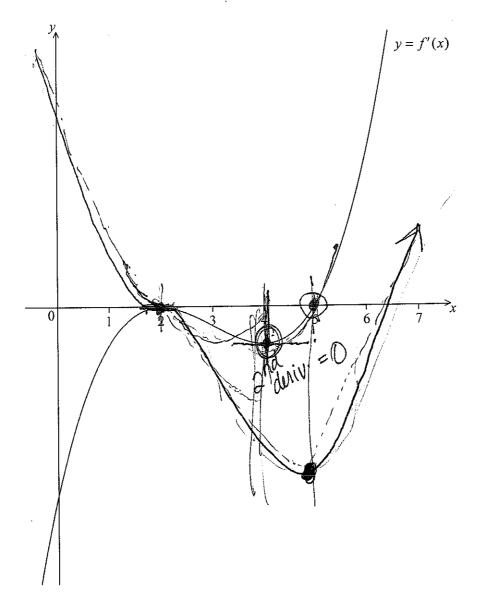
$$2s^{3} + 34s + 7a = 18$$

 $s^{3} + 12s + 36 = 9$
 $s^{3} + 12s + 27 = 0$
 $(s+9)(s+3)$
 -9

Do not write solutions on this page.

10. [Maximum mark: 15]

Let y = f(x), for $-0.5 \le x \le 6.5$. The following diagram shows the graph of f', the derivative of f.



The graph of f' has a local maximum when x=2, a local minimum when x=4, and it crosses the x-axis at the point (5,0).

(a) Explain why the graph of f has a local minimum when x = 5. Dec f' = 0 at [2]

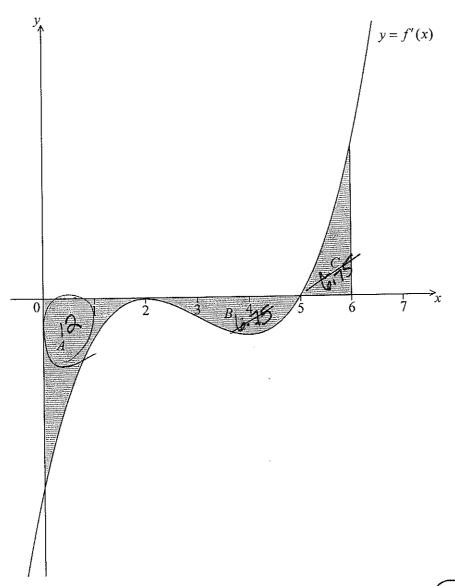
(b) Find the set of values of x for which the graph of f is concave down. [2]

(This question continues on the following page)

Do not write solutions on this page.

(Question 10 continued)

The following diagram shows the shaded regions A, B and C.



The regions are enclosed by the graph of f', the x-axis, the y-axis, and the line x = 6. The area of region A is 12, the area of region B is 6.75 and the area of region C is 6.75.

(c) Given that
$$f(0) \equiv 14$$
, find $f(6)$. [5]

(d) Let g(x) Given that f'(6) = 16, find the equation of the tangent to the graph of g at the point where $x \gg 0$

f(5)-f(0)+f(5)-f(5)+f(6)-f(5) f(2)-f(0)=12 f(5)-f(2)=6.75

 $-12 \qquad \qquad -13 \qquad \qquad +(6) - +(5) - 6.75 = \\ -14 + +(6) = 2000 + (6) = 2000 + 2 = \\ -14 + +(6) = 2000 + (6) = 2000 + 2 = \\ -14 + +(6) = 2000 + (6) = 200$

$$g(x) = (f(x))^2$$
 $f'(6) = 16$ $x = 6$
 $m = 16 @ 60 (f(6))^2 = 4$

$$G'(X) = 2f(X) f'(X)$$

$$2(2)(10) = 64$$

M = 64

$$y - 4 = 64(x - 6)$$

$$y = 64x - 380 (3)$$

held to check IB mark scheme