Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. All students should therefore be

[Maximum mark: 16]

The function f is defined by $f: x \mapsto -0.5x^2 + 2x + 2.5$ (1); (560) + 240) + 2.5 = y

- - $f'(x); -\chi + 2$
 - f'(0).
- (b) Let N be the normal to the curve at the point where the graph intercepts the $\frac{2marks}{50 \text{ J}}$ (b) Let N be the normal to the curve at the point where the graph intercepts the $\frac{2marks}{50 \text{ J}}$ (c) $\frac{2marks}{3marks}$ Let $g: x \mapsto -0.5x + 2.5$.
- (c) Find the solutions of f(x) = g(x).
 - Hence find the coordinates of the other point of intersection of the (-5,-20)
- Let R be the region enclosed between the curve and N.

- Write down an expression for the area of R.
- Hence write down the area of R. Can use calchere

$$.5x^{2}+2x+2.5 = -.5x+2.5$$

$$.5x^2 + 2.5x = 0$$

$$.5x(x+5)=0$$

$$f(-5) = .5(-5)^{2} + 2(-5) + 2.5$$

$$-12.5 - 10 + 2.5 = -20$$

$$-5$$

$$+2.5$$

$$-5x^{2}+2.5xdx$$

$$-1/6x^{3}+1.25x^{2}$$

$$-(-5)^{3}+1.25(-5)^{2}$$

$$+20.83+31.25$$

$$-52.08$$

[6 marks]

2. [Maximum mark: 18]

A farmer owns a triangular field ABC. One side of the triangle, [AC], is 104 m, a second side, [AB], is 65 m and the angle between these two sides is 60°.

- 3 -

- (a) Use the cosine rule to calculate the length of the third side of the field. [3 marks] $CB^2 = |CH|^2 + 65^2 2(104)(65)\cos 60 = 9/6$
- (b) Given that $\sin 60^\circ = \frac{\sqrt{3}}{2}$, find the area of the field in the form $p\sqrt{3}$ where p is an integer. $\frac{1}{2}(104)(65)\sqrt[3]{2} = 1690\sqrt{3}$ [3 marks]

Let D be a point on [BC] such that [AD] bisects the 60° angle. The farmer divides the field into two parts A_1 and A_2 by constructing a straight fence [AD] of length x metres, as shown on the diagram below.

(c) (i) Show that the area of A_i is given by $\frac{65x}{4}$.

(ii) Find a similar expression for the area of A_2 . $\frac{2(104)}{4}$

- (iii) Hence, find the value of x in the form $q\sqrt{3}$, where q is an integer. [7 marks
- (d) (i) Explain why $\sin A\hat{D}C = \sin A\hat{D}B$. Because they we supplemetary
 - (ii) Use the result of part (i) and the sine rule to show that

Use the result of part (1) and discount
$$\frac{BD}{DC} = \frac{5}{8}$$
. $\frac{Sin \times}{65} = \frac{Sin(180 - x)}{104}$ $Sin \times \frac{65}{104}$ 5 marks]

 $\frac{104x}{4} + \frac{65x}{4} = \frac{1690\sqrt{3}}{4} = \frac{1690\sqrt{3}}{109x} = \frac{1690\sqrt{3}}{100x} = \frac{$

3. [Total mark: 22]

Part A [Maximum mark: 14]

The diagram below shows the graphs of $f(x) = 1 + e^{2x}$, g(x) = 10x + 2, $0 \le x \le 1.5$

(a) (i) Write down an expression for the vertical distance p between the graphs of f and g. Q(X) - Q(X) = Q

Given that p has a maximum value for $0 \le x \le 1.5$, find the value of x at which this occurs.

The graph of y = f(x) only is shown in the diagram below. When x = a, y = 5.

 $\begin{array}{c}
 10 - 2e^{2x} = 0 \\
 -2e^{2x} = -10 \\
 10e^{2x} = 10e^{2x} = 10e^{2x} \\
 2x = 10e^{2x} = 1e^{2x} \\
 2x = 1e^{2x} = 1e$

(b) (i) Find $f^{-1}(x)$.

(ii) Hence show that $a = \ln 2$. So $\frac{\ln 4}{3} = a \frac{3 \ln 4}{3 \ln 2} = \ln 2$.

(c) The region shaded in the diagram is rotated through 360 about the x-axis.

Write down an expression for the volume obtained.

[3 marks]

 $\pi \int (1+e^{2x})^2 dx$

22xx-xxxx

Part B [Maximum mark: 8]

Consider the function $h: x \mapsto \frac{x-2}{(x-1)^2}, x \neq 1$.

A sketch of part of the graph of h is given below.

The line (AB) is a vertical asymptote. The point P is a point of inflexion.

Write down the equation of the vertical asymptote.

Find h'(x), writing your answer in the form

on of the vertical asymptote.
$$\chi = 1$$

r answer in the form
$$\frac{a-x}{(x-1)^n} = \frac{(x-3)^2 - (x-1)^3}{(x-1)^3}$$
 $= (x-3)^2 = 3-x$

[4 marks]

[4 marks]

where a and n are constants to be determine

(c) Given that
$$h''(x) = \frac{2x-8}{(x-1)^4}$$
, calculate the coordinates of P. $(4)^2/Q$ [3 marks]

$$\frac{-(x^2-4x+3)}{(x-1)^4}=-\frac{(x-3)(x-1)}{(x-1)^{4/3}}$$

$$f(4) = \frac{4-2}{(4-1)^2} = \frac{2}{9}$$

Turn over

22xx-xxxx

[Maximum mark: 19] 4.

Bag A contains 2 red balls and 3 green balls. Two balls are chosen at random from the bag without replacement. Let X denote the number of red balls chosen. The following table shows the probability distribution for X_{-}

X	0 "	1	2
P(X=x)	3 10	6 10	$\left(\frac{1}{10}\right)$

-6-

Calculate E(X), the mean number of red balls chosen. $O \cdot 3/10 + 1 \cdot 6/10 + 2 \cdot 1/10 = 6/10 + 2/10 = 8/10$ Bag B contains 4 red balls and 2 green balls. Two balls are chosen at random from bag B. Draw a tree diagram to represent the above information, including (b) (i)

the probability of each event.

Hence find the probability distribution for Y, where Y is the number (ii) of red balls chosen.

A standard die with six faces is rolled. If a 1 or 6 is obtained, chosen from bag A, otherwise two balls are chosen from bag B.

Calculate the probability that two red balls are chosen.

[5 marks]

Given that two red balls are obtained, find the conditional probability that (d) a 1 or 6 was rolled on the die.

[3 marks]

[8 marks]

$$P(A|aR) = \frac{P(A \cap aR)}{P(aR)}$$

= $\frac{1/30}{9/30} = \frac{1}{6}$

5. [Maximum mark: 15]

In this question, distance is in kilometers, time is in hours.

A balloon is moving at a constant height with a speed of 18 km h⁻¹, in the

direction of the vector
$$\begin{pmatrix} 3\\4\\0 \end{pmatrix}$$
 = $\sqrt{9+16}$ = 5 $5x=18/5$ $x=3.6$

At time t=0 the balloon is at point B with coordinates (0,0,5).

(a) Show that the position vector b of the balloon at time t is given by

$$b = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 5 \end{pmatrix} + t \begin{pmatrix} 10.8 \\ 14.4 \\ 0 \end{pmatrix}. \qquad b = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 5 \end{pmatrix} + t \begin{pmatrix} 3.6 \\ 4.6 \end{pmatrix} \begin{pmatrix} 3 \\ 466 \end{pmatrix} marks]$$

$$b = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 5 \\ 2 \end{pmatrix} + \begin{pmatrix} 0 \\ 4.4 \\ 0 \end{pmatrix}$$

At time t=0, a helicopter goes to deliver a message to the balloon. The position vector h of the helicopter at time t is given by

$$\boldsymbol{h} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 49 \\ 32 \\ 0 \end{pmatrix} + t \begin{pmatrix} -48 \\ -24 \\ 6 \end{pmatrix}.$$

- (b) (i) Write down the coordinates of the starting position of the helicopter. (49,32,0)
 - (ii) Find the speed of the helicopter. $\sqrt{(48)^2 + (-24)^2 + (6)^2} = 54$ [4 marks]
- (c) The helicopter reaches the balloon at point R.
 - (i) Find the time the helicopter takes to reach the halloon. 5/6 m.
 - (ii) Find the coordinates of R. (9, 12, 5) [5 marks]

$$49-48t=0+10.85$$
 $49-48(516)=9$
 $32-24t=0+14.45$ $32-34(516)=12$
 $0+6t=5+05$ $0+6(516)=5$