Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

SECTION A

Answer all the questions in the spaces provided. Working may be continued below the lines, if necessary.

1. [Maximum mark: 5]

The following diagram is a box and whisker plot for a set of data.

The interquartile range is 20 and the range is 40.

1	(a)	TTL: An Jarre	n the median yalue
ľ	aв	write dow	m ine median vaiue.
٦	,	11,2240	

[1 mark]

- (b) Find the value of
 - (i) a;

/ * * *	7
(11)	n
(11)	"

[4 marks]

	-	•	-	_	-	-	-	-	-	•	•	•			_	·	-																						-		Ī	•	•			
d	۲٠		•	٠.	•									 								 ٠.				٠.											•									
Q.	X		. l	L	· ·•	=		/	(,) /		•		 								 									•						•									
/À	L		ą.	6				4	7	<i>l</i>				 						•		 	٠					•						•												
(٠.											•	 				•				 		•								•	 •		•			•					٠			
														 						-	•	 											 						٠	-						
														 								 							٠	 •			 			•								•		
																						 					 		•				 													
																																													_	

2. [Maximum mark: 6]

Consider the graph of f shown below.

(a) On the **same** grid sketch the graph of y = f(-x).

[2 marks]

(This question continues on the following page)

(Question 2 continued)

The following four diagrams show images of f under different transformations.

(b) Complete the following table.

[2 marks]

Description of transformation	Diagram letter
Horizontal stretch with scale factor 1.5	C
Maps f to $f(x)+1$	D

(c) Give a full geometric description of the transformation that gives the image in Diagram A.

[2 marks]

												$\overline{}$																									
 	 	 					•	•		•				•	٠	 	-	•	•	 •	•		•	•	•	•	 	•	•	•	•	•	•	-	 •	•	• •
 	 ٠.															 				 •		•	٠				 		•		•		•			•	
 	 															 				 			•				 	. ,			•		•	•	 	•	٠

3. [Maximum mark: 5]

Solve the equation $e^x = 4 \sin x$, for $0 \le x \le 2\pi$.

	This is paper 2 so U
$e^{-4\sin x}$	c This is paper 2 so u your calculator
	or .371
X=.1,3.(

4. [Maximum mark: 8]

The diagram below shows a triangle ABD with AB = 13 cm and AD = 6.5 cm. Let C be a point on the line BD such that BC = AC = 7 cm.

(a) Find the size of angle ACB.

[3 marks]

(b) Find the size of angle CAD.

[5 marks]

Cosc =	$\frac{C^2 - b^2 - a^2}{-\partial bc}$	COSC =	132-49-49

Sin43.57 = Sin D

CAD = 4,33°	151	88.5/

.....

- 5. [Maximum mark: 7]
 - (a) Expand $\sum_{r=4}^{7} 2^r$ as the sum of four terms

[1 mark]

- (b) (i) Find the value of $\sum_{r=4}^{30} 2^r$.
 - (ii) Explain why $\sum_{r=4}^{\infty} 2^r$ cannot be evaluated.

[6 marks]

a) 2 + 2 + 2 + 2

b(i) Geometric W/ 1-2

(11) = because it is continuing to

bounds therefore you will never reach the Un term

when r > 111

6. [Maximum mark: 7]

Consider the curve $y = \ln(3x-1)$. Let P be the point on the curve where x = 2.

(a) Write down the gradient of the curve at P.

[2 marks]

(b) The normal to the curve at P cuts the x-axis at R. Find the coordinates of R.

[5 marks]

__y = /6x-1)

 $f'(2) = \frac{3}{3(2)-1} = \frac{3}{5}$

x=2 y=ln(5)

ln(5) = -5/3(2) + b

494 = 6

 $0 = -\frac{5}{3}(x) + 494$

2,964=x R (2,96,0)

7.	[Maximum	mark:	7]
	L		

The quadratic equation $kx^2 + (k-3)x + 1 = 0$ has two equal real roots.

(a) Find the possible values of k.

[5 marks]

Write down the values of k for which $x^2 + (k-3)x + k = 0$ has two equal real roots.

[2 marks]

1 1		2/	7 2	112		=()
	/ 5.	$x^2 + 0$	7.7.9.,	<u>パt</u>	<i>-1</i>	····
Λ	ール	h - V	2	A -	. 1	
· //	= n	(r) == n	- .)		- 1	

 $(b^2 - 2ac = 0)$ $(K-3)^2 - 2(K)(r) = 0$

K208K+9=0

 $Q=1 \quad b=-8 \quad C=9$

 $\frac{(1-1)^{2}}{8\pm\sqrt{64-36}} = \frac{8\pm\sqrt{28}}{2} \frac{8\pm\sqrt{2}}{2}$

K=4±17

b) 4x2+(1417)x+4+1770

Then graph

-b+ 162-4ac

1013

Do NOT write on this page.

9. [Maximum mark: 13]

A van can take either Route A or Route B for a particular journey.

If Route A is taken, the journey time may be assumed to be normally distributed with mean 46 minutes and a standard deviation 10 minutes.

If Route B is taken, the journey time may be assumed to be normally distributed with mean μ minutes and standard deviation 12 minutes.

- [2 marks] For Route A, find the probability that the journey takes more than 60 minutes. (a)
- For Route B, the probability that the journey takes less than 60 minutes is 0.85: Find the value of μ . - Use Chart to find Z Scare [3 marks]
- The van sets out at 06:00 and needs to arrive (c)
 - Which route should it take? (i)
- oll oblive about a poly of [3 marks] On five consecutive days the Van sets out at (600) and takes Route B. Find the
- (d)

$$Z = \frac{160 - 46}{10} = \frac{14}{10} = 1.4$$

26 36

Do NOT write on this page.

10. [Maximum mark: 18]

Let $f(x) = 3\sin x + 4\cos x$, for $-2\pi \le x \le 2\pi$.

(a) Sketch the graph of f.

[3 marks]

- (b) Write down
 - (i) the amplitude; 5
 - (ii) the period;
 - (iii) the x-intercept that lies between $-\frac{\pi}{2}$ and 0.

-. 927

[3 marks]

(c) Hence write f(x) in the form $p\sin(qx+r)$.

5 sin(5x+.927)

[3 marks]

(d) Write down one value of x such that f'(x) = 0.

- 1.28

[2 marks]

(e) Write down the two values of k for which the equation f(x) = k has exactly two solutions. $(x) = 3 \sin x + 4 \cos x$

[2 marks]

(f) Let $g(x) = \ln(x+1)$, for $0 \le x \le \pi$. There is a value of x, between 0 and 1, for which the gradient of f is equal to the gradient of g. Find this value of x.

[5 marks]

$$\frac{2\pi}{8} = 6$$

$$f'(x) = -\frac{5\pi}{3} \cos(\frac{\pi}{3}x + .927)$$

$$-\frac{5\pi}{3} \cos(\frac{\pi}{3}x + .927) = 0$$

$$\cos(\frac{\pi}{3}x + .927) = 0$$

$$\cos(\frac{\pi}{3}x + .927) = 0$$

$$\sin(\frac{\pi}{3}x + .927) = 0$$

苦x=(-927+12)3/1

+2781+32=+1.281

2209-7306