1. A line L passes through A(1, -1, 2) and is parallel to the line
$$r = \begin{pmatrix} -2 \\ 1 \\ 5 \end{pmatrix} + s \begin{pmatrix} 1 \\ 3 \\ -2 \end{pmatrix}$$
.

(a) Write down a vector equation for
$$L$$
 in the form $r = a + tb$.
The line L passes through point P when $t = 2$.

Write down a vector equation for
$$L$$
 in the form $r = a + \iota b$.

Find

(i) \overrightarrow{OP} ; (3)

(ii) $|\overrightarrow{OP}|$ = $\sqrt{9+35+4}$ = $\sqrt{38}$

(a) Find
$$(i) \quad \overrightarrow{AB}; \quad \begin{pmatrix} \overrightarrow{A} \\ -\overrightarrow{A} \end{pmatrix}$$

(b)

(i)
$$\overrightarrow{AB}$$
; (-3)
(ii) \overrightarrow{AD} , giving your answer in terms of k . $\begin{pmatrix} 3 \\ -2 \end{pmatrix}$
Show that $k=7$. $\begin{pmatrix} 4 \\ -2 \end{pmatrix}$

1

(b) Show that
$$k = 7$$
.

(b) Show that
$$k = 7$$
.

The point C is such that $\overrightarrow{BC} = \frac{1}{2}\overrightarrow{AD}$.

 $\overrightarrow{D} = \frac{1}{2}(2) = (-1)$
 $\overrightarrow{D} = 2$

(c) Find the position vector of C.

 $\overrightarrow{D} = 2$
 $\overrightarrow{D} = 2$

3. The vectors
$$\vec{i}$$
, \vec{j} are unit vectors along the x-axis and y-axis respectively.
The vectors $\vec{u} = -\vec{i} + 2\vec{i}$ and $\vec{v} = 3\vec{i} + 5\vec{i}$ are given $\vec{l} = \vec{l}$

The vectors
$$\vec{u} = -\vec{i} + 2\vec{j}$$
 and $\vec{v} = 3\vec{i} + 5\vec{j}$ are given.

(a) Find $\vec{u} + 2\vec{v}$ in terms of \vec{i} and \vec{j} .

(b) $\vec{j} = (12)$

A vector
$$\vec{w}$$
 has the same direction as $\vec{u} + 2\vec{v}$, and has a magnitude of (26) $(5^2 + 12^2 = 13 \text{ So } \times 2)$
(b) Find \vec{w} in terms of \vec{i} and \vec{j} . $\vec{w} = 10\vec{i} + 24\vec{j}$

At time
$$t = 0$$
 it is at the point $(-2, 1)$

(a) Find the magnitude of
$$\nu$$
. $\sqrt{4^2+3^2} = 5$

(b) Find the coordinates of B when
$$t = 2$$
. (6,7)

Write down a vector equation representing the position of B, giving your answer in the form
$$r = a + tb$$
.

The following diagram shows quadrilateral ABCD, with $\overrightarrow{AD} = \overrightarrow{BC}$, $\overrightarrow{AB} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$ and $\overrightarrow{AC} = \begin{pmatrix} 4 \\ 4 \end{pmatrix}$. 5.

diagram not to scale

(a) Find
$$\overrightarrow{BC}$$
. $\overrightarrow{BA} + \overrightarrow{AC} = \begin{pmatrix} -3 \\ -1 \end{pmatrix} + \begin{pmatrix} 4 \\ 4 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$

(b) Show that
$$\overrightarrow{BD} = \begin{pmatrix} -2 \\ 2 \end{pmatrix}$$
. $\overrightarrow{BA + AD} = \begin{pmatrix} -3 \\ -1 \end{pmatrix} + \begin{pmatrix} 1 \\ 3 \end{pmatrix} = \begin{pmatrix} -2 \\ 2 \end{pmatrix}$

(c) Show that vectors
$$\overrightarrow{BD}$$
 and \overrightarrow{CA} are perpendicular. $-2 \cdot -4 + 2 \cdot -4 = 0$
 $8 - 8 = 0 \checkmark$

6. Line L_1 passes through points A(1, -1, 4) and B(2, -2, 5).

(a) Find
$$\overrightarrow{AB}$$
.
(b) Find an equation for L_1 in the form $r = a + tb$. $\Gamma = \begin{pmatrix} -1 \\ -4 \end{pmatrix} + t \begin{pmatrix} -1 \\ -1 \end{pmatrix}$ $\begin{pmatrix} -3 & -2 \\ -1 & -3 & 2 \end{pmatrix}$

Line
$$L_2$$
 has equation $r = \begin{pmatrix} 2 \\ 4 \\ 7 \end{pmatrix} + s \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$.
(c) Find the angle between L_1 and L_2 .

(d) The lines
$$L_1$$
 and L_2 intersect at point C. Find the coordinates of C. $2 \pm 2 \leq \pm 1 \pm 2$

(d) The lines
$$L_1$$
 and L_2 intersect at point C. Find the coordinates of C

7. Let $\overrightarrow{AB} = \begin{pmatrix} 6 \\ -2 \\ 3 \end{pmatrix}$ and $\overrightarrow{AC} = \begin{pmatrix} -2 \\ -3 \\ 2 \end{pmatrix}$.

(a) Find \overrightarrow{BC} . $\overrightarrow{BA} + \overrightarrow{AC} = \begin{pmatrix} -\frac{2}{3} \\ -\frac{2}{3} \end{pmatrix} + \begin{pmatrix} -\frac{2}{3} \\ -\frac{2}{3} \end{pmatrix} = \begin{pmatrix} -\frac{2}{3} \\ -\frac{1}{3} \end{pmatrix} + \begin{pmatrix} -\frac{2}{3} \\ -\frac{1}{3} \end{pmatrix} = \begin{pmatrix} -\frac{2}{3} \\ -\frac{1}{3} \end{pmatrix} + \begin{pmatrix} -\frac{2}{3} \\ -\frac{1}{3} \end{pmatrix} = \begin{pmatrix} -\frac{2}{3} \\ -\frac{1}{3} \end{pmatrix} + \begin{pmatrix} -\frac{2}{3} \\ -\frac{1}{3} \end{pmatrix} = \begin{pmatrix} -\frac{2}{3} \\ -\frac{1}{3} \end{pmatrix} + \begin{pmatrix} -\frac{2}{3} \\ -\frac{1}{3} \end{pmatrix} = \begin{pmatrix} -\frac{2}{3} \\ -\frac{1}{3} \end{pmatrix} + \begin{pmatrix} -\frac{2}{3} \\ -\frac{1}{3} \end{pmatrix} = \begin{pmatrix} -\frac{2}{3} \\ -\frac{1}{3} \end{pmatrix} = \begin{pmatrix} -\frac{2}{3} \\ -\frac{1}{3} \end{pmatrix} + \begin{pmatrix} -\frac{2}{3} \\ -\frac{1}{3} \end{pmatrix} = \begin{pmatrix} -\frac{2}{3} \\ -\frac{1}{3} \end{pmatrix} + \begin{pmatrix} -\frac{2}{3} \\ -\frac{1}{3} \end{pmatrix} = \begin{pmatrix} -\frac{2}{3} \\ -\frac{1}{3} \end{pmatrix} + \begin{pmatrix} -\frac{2}{3} \\ -\frac{1}{3} \end{pmatrix} = \begin{pmatrix} -\frac{2}{3} \\ -\frac{1}{3} \end{pmatrix} + \begin{pmatrix} -\frac{2}{3} \\ -\frac{1}{3} \end{pmatrix} = \begin{pmatrix} -\frac{2}{3} \\ -\frac{1}{3} \end{pmatrix} = \begin{pmatrix} -\frac{2}{3} \\ -\frac{1}{3} \end{pmatrix} + \begin{pmatrix} -\frac{2}{3} \\ -\frac{1}{3} \end{pmatrix} = \begin{pmatrix} -\frac{2}{3} \\ -\frac{2}{3} \end{pmatrix} = \begin{pmatrix} -\frac{2}{3} \\ -\frac{2}{3}$

(b) Find a unit vector in the direction of
$$\overrightarrow{AB}$$
.

(c) Show that \overrightarrow{AB} is perpendicular to

8. In this question, distance is in metres.

Toy airplanes fly in a straight line at a constant speed. Airplane I passes through a point A.

Its position,
$$p$$
 seconds after it has passed through A, is given by $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3 \\ -4 \\ 0 \end{pmatrix} + p \begin{pmatrix} -2 \\ 3 \\ 1 \end{pmatrix}$

